## Exercise 24

For the following exercises, determine the domain and range of the quadratic function.

$$
f(x)=2 x^{2}-4 x+2
$$

## Solution

Any value of $x$ can be plugged into a polynomial function, so the domain is

$$
\{x \mid-\infty<x<\infty\} .
$$

In order to determine the range, first write the quadratic function in vertex form by completing the square, which makes use of the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Factor the coefficient of $x^{2}$.

$$
f(x)=2\left(x^{2}-2 x+1\right)
$$

Notice that $2 B=-2$, which means $B=-1$ and $B^{2}=1$. Add and subtract 1 on the right side and then use the identity to make $x$ appear in only one place rather than two.

$$
\begin{aligned}
f(x) & =2\left[\left(x^{2}-2 x+1\right)+1-1\right] \\
& =2\left[(x+(-1))^{2}+0\right] \\
& =2(x-1)^{2}
\end{aligned}
$$

Because the coefficent of the squared term is positive, the parabola opens upward; in other words, the squared term takes on values between zero and infinity. The smallest value of $f(x)$ is 0 , and the highest value of $f(x)$ is $\infty$.

$$
\{y \mid 0 \leq y<\infty\}
$$



